
979-8-3503-3036-6/24/$31.00 ©2024 IEEE 

Assessing the Health of a Network Under Attack 

 

Pedro Marques  
Applied Research 
British Telecom 

Ipswich, United Kingdom 
pedro.marques@bt.com 

Alfie Beard 
Applied Research 
British Telecom 

Ipswich, United Kingdom 
alfie.beard@bt.com 

Jonathan Roscoe 
Applied Research 
British Telecom 

Ipswich, United Kingdom 
jonathan.roscoe@bt.com 

Abstract—When faced with a malware outbreak, the health 

of a computer network is hard to quantify. Calculating the 

number of infected nodes is a straightforward approach, but it 

fails to capture intricacies of the devices that make up the 

network. The choice between which of two network states is 

preferable might not correlate directly with the number of 

infected nodes in each, as different nodes carry different 

importance to the overall function of the network. In this paper 

we propose a method of assessing the health of a network under 

attack from a malware outbreak. The proposed method allows 

for a quantitative measure of how well a network is handling a 

malware outbreak, as well as the comparison between different 

network states and the ranking of possible mitigating actions. 

The method proposed can be adapted to different networks, 

with its usefulness increasing with the amount of data available 

for a given network. 

Keywords—Network security, network modelling, security 
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I. INTRODUCTION 

Malware outbreaks continue to pose a significant 
challenge for security professionals tasked with protecting 
computer networks. The number of cyber incidents is 
continuously on the rise, with the frequency of enterprise 
ransomware incidents increasingly making headlines in news 
reports [2, 10]. When a malware outbreak is detected, the most 
straightforward approach to take is to simply shut down the 
network. Such a drastic action eliminates the threat entirely, 
but this is seldom an option for large enterprises, as these face 
a large number of security alerts, many of which false 
positives [7]. 

Instead during a cyber response, it may be preferable to 
“tolerate” a possible malware outbreak, through the enacting 
of different mitigating actions that affect how a malicious 
agent can spread across the network, and how much damage 
they are able to cause. These actions can include removing or 
isolating specific devices on the network, disallowing specific 
ports, services, applications or users from operating 
throughout the network, or deploying additional firewall 
protections, among others. These actions will often have an 
impact on the performance and quality of a network, for 
example, by preventing users from carrying out their normal 
business operations. Thus, a careful balance needs to be struck 
between defending against a network intrusion and the extent 
to which normal network functionality is compromised. 

Security professionals must take decisions that balance 
confidentiality, integrity and availability [5]. These decisions 
however, are often hard to justify, due to a lack of meaningful 
and direct metrics to assess the state of a network. The goal is 
to keep the network as “healthy” as possible, preserving as 
much of the original network functionality, whilst minimising 
the impact of a malware intrusion. From a high-level point of 
view, a network with a large number of infected devices is an 
unhealthy network. Likewise, a network operating under a 

large amount of restrictions from enacted defensive actions is 
also an unhealthy network. 

In this paper, we propose an approach for calculating a 
“health score” for a computer network during the course of a 
security event. This health score comes in the form of a 
percentage metric, allowing for an easy assessment of a 
network's condition at any one point in time, as well as the 
comparison of different network states relative to each other. 
The ability to compare different network states' health is 
especially important, as it allows for the comparison of 
different mitigating actions. We show how coupled with a 
malware simulation engine, such an ability allows for a more 
accurate forecasting of the potential damage and reach of a 
malware, and consequently lead to a more robust defence of a 
network by allowing for the selection of the best possible 
mitigating action. 

This paper is organised as follows: in section II  we give a 
brief overview of related work, and the current 
implementations of the most similar techniques. Section III  
gives an overview of the framework we propose for 
calculating the health score of a computer network. We 
exemplify the use of the framework within our threat response 
tool, in section IV, and further discuss the nuances and 
requirements for extending the framework to accommodate 
different scenarios in section V. Finally, section VI concludes 
with a discussion of the limitations of our proposal, as well as 
calls for additional works on the subject. 

II. RELATED WORK 

Attack-graphs are often employed for the defence of 
networks. Such graphs represent the possible paths an attacker 
can take to reach a certain target or goal within a given 
network, constructed from the vulnerability information 
present about the devices and their connections. There is a 
large body of research on the use of attack-graphs [1, 4, 6] for 
both detection and defence, and these provide security 
professionals a way of identifying critically vulnerable paths 
an attacker might use to traverse a network. Attack-graphs can 
be used to extrapolate an overall security score to a device, set 
of devices or the overall network. The authors of [9] propose 
a method for defining a risk score based on the Common 
Vulnerability Scoring System (CVSS) of vulnerabilities found 
on devices and the connections between them. Whilst not 
explicit, such a method could be extended to provide an 
overall network risk score. However, this risk score would be 
a constant value of a network's risk, dependent on the 
attributes present at a fixed point in time and would not reflect 
any current state of a network during a malware outbreak (i.e., 
it would not take into account devices already compromised 
by an attacker). 

Explicit work on classifying the health of a network during 
an outbreak is not prominent in the literature. Most notably, 
Gujral et. al detail a network health monitoring system 



achieved through the monitoring of end-user inbound and 
outbound network traffic, anomalous fingerprints and known 
vulnerabilities [3]. Such a system provides real-time analysis 
of the health of the network, but requires explicit network 
traffic data and vulnerability knowledge, which can limit its 
applicability. Similar works have been patented before [8, 11] 
however, these approaches rely on the monitoring of network 
activity and well-known security events, which again limit 
their applicability towards generic network environments. 

III. FRAMEWORK 

The health of a network is directly dependent on the state 
of the devices that it incorporates, and whether or not each 
device is operating as intended across the multiple network 
layers. Different devices contribute different amounts to the 
health of a network. For example, when considering an 
industrial SCADA network, it would be reasonable to assume 
that devices which directly control large-scale machinery, 
such as turbines, are of extreme importance and that, from the 
perspective of a network administrator, are critical points to 
defend in the network. In contrast, printer devices are less 
important in the overall network, meaning that temporary 
restrictions on these are generally more acceptable. 

The importance of a device is a double-edged sword, as 
their ability to be impactful for the healthy operations of the 
network is also equally impactful for the destructive purposes 
of a malware. A basic example of this is a central router with 
connections to multiple outer devices. This central router is of 
great importance to the overall communications within the 
network. However, if it becomes compromised, then an 
attacker gains access to a large number of new victims, as well 
as potentially sensitive information being transmitted over the 
network. 

The impact of a device on the overall network can also 
change over time, depending on a multitude of reasons. 
Continuing from the previous example, a central router's 
impact to the correct operation of the network is in part related 
to the number of connections it has with other devices. 
Restricting the number of connections a device has access to 
lowers its overall impact on the network's health. This is the 
case whether the device is currently infected or not. In other 
words, non-infected devices are less important to the normal 
operation of the network if they have fewer links to other 
devices, and an infected device's negative contribution to the 
health score is similarly diminished due to the same 
circumstance - i.e., it has less linked devices that it can try to 
exploit or gain information from. Additionally certain nodes' 
importance's are time-sensitive - for example, databases might 
be accessed more often at specific times of day. 

The main challenge of our framework is assigning a 
contribution value  to each device on a network. We devise 
this process as a modular approach, capable of being extended 
in tandem with the amount of data available for a particular 
network and the devices within it. 

                                                           
1 Note that links can denote 'direct' paths between devices, 

but sequences of links can also denote communication 
channels that involve one or more 'steps', such as traffic 

going through a firewall when travelling between two end-
user devices. 

Our framework uses an abstract representation of a 
computer network, that can have varying levels of complexity 
depending on the outcomes and intelligence available. At the 
most basic level, the topology of a network - even if 
incomplete - is something that is almost always available to a 
security professional. With this being the case, it is common 
to find computer networks modelled as structured graphs.  In 
such representations, the various devices that make up a 
network (e.g., servers, host machines, routers, switches, 
sensors, etc) are represented as nodes in the graph. Any links 
between the nodes represent possible communication 
channels between devices1 . Figure 1 shows how a typical 
computer network might be modelled in this manner. 

The first approach for calculating the impact of each 
device on a network is to calculate the centrality2 of each node.  
In the absence of additional data, nodes with higher centrality 
values - i.e., nodes with a higher number of connections - are 
more important to the operation of a network. All else being 
equal, it is straightforward to assume that a node with a single 
connection is less impactful and easier to replace than a node 
with multiple connections. 

Consider the examples shown in figures 2 and 3, where we 
present two possible states of the same network. In figure 2 
the node in the centre of the network is infected, while in 
figure 3 two of the outer nodes are infected. With a more 
traditional security view we might consider that a higher 
number of infected nodes is a worse state for our network. 
However, this might not necessarily be the case if the nodes in 
question are of little importance to the overall network's 
function. Lacking any details of the devices past where they 
lay on the network, it's not unreasonable to assume that the 
central node being infected is sub-optimal compared to the 
alternative3. Thus, we assign for each node a contribution 
value equal to its centrality. 

After determining the contribution value of a node, the 
next step is to identify whether the node is infected or not. As 
we described previously, each infected node still contributes 
the same absolute amount to the overall network health, but in 
being in the control of a malicious actor, it can use this 
leverage to attack the network. In a sense, we simply negate 
the value of contribution for each node that is infected. 

 

 

Figure 1: Example graph for a computer network 

2 There are different ways of calculating the centrality of 
nodes, for the purposes of this paper we will be using degree 

centrality. 
3 The central node has direct access to four other nodes 

which can be potential victims, whilst the two outer nodes 
only have access to a single potential victim. 



 

Figure 2: Network with center node infected 

 

Figure 3: Network with two outer nodes infected 

Following the calculation of each node's contribution 
value, the health score for the overall network is simply the 
sum of all of its nodes' contributions. For the examples in 
figures 2 and 3, the contribution values are shown as the labels 
on each node, and the overall network health score is 1.76 and 
2.2, respectively. 

As an absolute value, the health score metric calculated 
above is enough to compare different states of the same 
network, where greater values indicate healthier network 
states.  However, on its own the score is unintuitive, as it can 
vary wildly between different networks and states of the same 
network. Knowing that the network state presented in figure 2 
has a health score of 1.76 tells an analyst nothing without the 
context of knowing the limits of this score. In order to increase 
the metric's explainability, we must first determine what the 
best and worst possible states for the network are. These limit 
states are straightforward to calculate if we have no additional 
data on the network. The best possible state is one where all 
of the nodes are not infected, while the worst possible state is 
one where all the nodes are infected. For the network states 
shown in figures 2 and 3, the best possible health score would 
be 2.64 and the worst possible health score would be -2.64. 
Therefore, the network states have a normalized health score 
of 83.3\% and 91.6\%, respectively. 

So far, we have calculated a contribution value for each 
node by using only its centrality. While this is a decent start if 
we have no additional data about the network, the centrality of 
a node is far from a realistic representation of how important 
nodes in a network truly are. In a perfect world, a network 
administrator would be able to assign a final contribution 
value to each device a priori, perfectly encapsulating a node's 
true importance to the network. However, besides this being a 
far-fetched ideal, it also suffers from the problem that it does 
not update during the course of a security incident. As 
different events occur on the network, either from actions 
taken by a security professional, or based on actions from the 
malware itself, the contribution of each node changes. 

For example, additional firewall rules might be put in 
place on a load-balancing server, which impacts its 
performance and thus degrades the quality of the service to 
end-users. This change in performance ought to be captured in 
the calculation of contribution, with devices subjected to 
lower performance contributing less to the overall health of 
the network. Another example might be in disabling specific 
services from being run on devices throughout the network, 
which might make it difficult for malware to propagate, but at 
the same time reduce the functionality of the devices, and thus 
lower the overall health of the network. 

From the point of view of the malware, the actions it takes 
can also have an impact on the contribution value of each 
node. For example, by opening new ports on infected devices, 
it can increase its ability to spread to new victims. In this 
sense, the contribution of the infected node increases, but this 
increase works in favour of the attacker, as it results in an 
overall greater negative impact for the network health. 

In order to capture these aspects, we need to add additional 
steps to our calculation of contribution scores, past our initial 
computation of centrality. What these steps look like will 
depend on the nature of the network, the amount of data 
available, and which data is important to the security 
requirements of the network. We should also take into account 
what actions a security professional or the malware itself 
might enact, and make sure that the effects of these can be 
captured in some way in one or more of these steps. 

For example, the number of services a device is running 
might be of importance to the contribution of a device, and 
these services might be started or stopped during the course of 
an outbreak. As such, one possible step would be to simply 
take the number of services running on a device and add that 
value to the contribution score. A more sophisticated approach 
could be, for example, to give higher value to some services 
compared to others. In this sense, the value of services like 
SSH or FTP being present on a device might be doubled 
compared to the presence of other, less important services. 
The granularity of each of these steps is solely dependent on 
the amount of data available for the network and the 
requirements of the security administrator. For example, 
different versions of SSH could be given different values, or 
take into account whether SSH is run using a password or a 
certificate. 

The addition of more steps to the calculation of the 
contribution score of each device leads to an issue of 
mismatched units between the various components. For 
instance, while in our previous example in figures 2 and 3, the 
value of centrality was always lower than 1.0, the number of 
services running would be substantially higher. In order to 
account for multiple distinct calculation steps such as these, 
the resulting value of each individual calculation step should 
be multiplied by a weight variable, with the intent of creating 
parity between the various results. While in this paper we will 
present a variety of different example steps that can be taken 
based on the data available for a given network, the weights 
that should be given to each of these steps is left as an exercise 
to individual network administrators to tailor to their specific 
environment. This is because accurately capturing the 
elements that are impactful to devices' contribution values, is 
one that changes not only based on the network in question, 
but also the priorities of the security team and the nature of the 
malware being defended against. While it may be possible to 
arrive at a general consensus in regard to the use of common 



properties, in this paper we make no claims on the subject and 
leave this as an open question for future work. 

IV. FRAMEWORK IMPLEMENTATION 

Inflame is a network modelling and malware simulation 
tool currently in development at BT. Inflame models 
computer networks in much the same manner as shown in 
figure 1. On top of this model, it simulates the outbreak of a 
particular malware on the network, for example, a 
ransomware attack, and simulates how the malware might 
spread from device to device across the network. This 
malware propagation is done in an epidemiologically based 
approach, with infected devices being able to infect their 
direct neighbours according to a set of rules that dictate the 
necessary attributes each device must have to be susceptible, 
as well as an overall infection rate set for the simulation. 

The simulation is based on the idea of steps, where each 
step represents an arbitrary unit of time (e.g., 5 minutes, an 
hour, a day, etc). At each new step the simulation calculates 
the probability that any compromised node infects one or 
more of its neighbours. We calculate the network health score 
at each step in the simulation, allowing for an analyst to 
understand how an outbreak will evolve over time, and which 
steps are more damaging to the health of the network. The 
network model in our tool is a generic one, where devices can 
have any number of data points, such as open ports, services 
running, user accounts, known vulnerabilities, etc. Using 
these additional data points, we extend the framework for the 
calculation of each node's “contribution value”, to better 
capture the importance of each node. This extended 
framework is exemplified in figure 4. 

When calculating the contribution value of a given node, 
we first initialise two variables - the contribution value itself, 
initially set to 0, and an “importance factor”. The importance 
factor is a value assigned to each node on the network by an 
administrator, as an attempt to capture an expert's opinion on 
how impactful any given node is to the network as a whole. If 
not given, this importance factor is initialised to 1. 

Following this, a series of steps modifies the contribution 
value: 

1. The centrality of the node is multiplied by a 
weight variable and added to the contribution 
value. 

2. The sum of the node's neighbour's importance 
factors is multiplied by a weight variable and 
added to the contribution value. 

3. If the node can become infected - i.e., it has not 
been patched or otherwise made immune to the 
malware - the value of a weight variable is added 
to the contribution value (This step is a binary 
one - i.e. the node is either vulnerable or not, and 
as such the increase in contribution is a statically 
assigned value. This is shown in figure 4 as "1 * 
weight"). 

4. The contribution value is then set to the product 
of itself by the node's importance factor. 

5. Finally, if the node is currently infected, the 
contribution value is negated. 

The contribution value of each node, and consequently the 
health score of the network is calculated at each new step in 

the simulation. This has two direct benefits. Firstly, the 
progression of a network's health score can be analysed as the 
malware outbreak continues, allowing an administrator to 
understand how the security of the network evolves over time, 
and which areas become compromised when. Secondly, 
because the health score of a network is calculated based on 
the contribution value of each node within it, it becomes 
possible to identify regions of the network of particular 
importance. For example, regions most at risk of becoming 
targets of infection based on their contributions to the overall 
network, or regions which have already been affected the most 
by enacted security actions. 

In figure 5 we show an example of network regions 
visualised within Inflame. The colours of the various nodes 
represent their total contribution value, with blue nodes 
contributing the most positively, followed by greens, oranges 
and finally reds, which contribute the most negatively. In this 
example, we can easily identify the nodes in the largest subnet 
at the top of the figure as contributing the most towards the 
health of the network, with 4 instances of infected nodes 
within said cluster. The region with the most infected nodes is 
found in the subnet left of the central router, with 6 total 
infected nodes (in orange). Individual network regions, such 
as specific subnets, can be treated as networks in and of 
themselves, and so health scores for individual regions can 
also be calculated. 

 

Figure 4: Inflame contribution value diagram flow 



 

Figure 5: Example of identifying regions (health score = 85.42%) 

One of the core functionalities of Inflame, is as an 
automated threat response tool, capable of determining the 
most appropriate actions in responding to malware outbreaks. 
We leverage the simulation and network health assessment to 
trial a large set of different actions and determine which of 
these result in the best possible end state for a network. The 
possible actions trialled mirror those that security 
professionals have access to, such as patching vulnerable 
nodes, isolating nodes from the network, disabling ports and 
applications, etc. 

To illustrate this threat response process, consider the 
series of events depicted in figures 6 through 9, where we 
show an initial state of a network under attack (figure 6). This 
initial state depicts a network with a single infected node, itself 
connected to two other nodes, A and B. For the sake of 
simplicity in this example, we are considering the contribution 
value of each node to be equal to their centrality value. At this 
initial state, the network health score is 2.43, which after 
calculating the best and worst scores, can be converted to 
92.33\%. We can simulate the next step and understand how 
the malware might spread, and in this example we see that 
both node A and node B become infected (figure 7), leading 
to a new network health score of 0.87 (65.16\%). 

Knowing this, we can analyse two possible basic 
mitigating actions: (i) isolating node A from the network 
(figure 8) or (ii) isolating node B from the network (figure 9). 
Each of these actions would mean that the links involving each 
of these nodes would be removed4. We can simulate these 
actions and calculate the health score for the network in the 
following simulation step(s). In our example, removing node 
A, prevents it from being infected, resulting in a network 
health score of 1.27 (72.13\%), while removing node B results 
in a network health score of 1.26 (71.95\%). While subtle, this 
allows us to identify that either of our actions results in a better 
network state compared to doing nothing, and that removing 
node A is a slightly better action than removing node B. 

                                                           
4 Note that by removing links from the graph, the centrality 

value of nodes changes. 

 

Figure 6: Action example, initial state (92.33%) 

 

Figure 7: Action example, no action (65.16%) 

 

Figure 8: Action example, remove A (72.13%) 

 

Figure 9: Action example, remove B (71.95%) 

It is important to emphasise that the difference between the 
two actions is subtle primarily because we're only considering 
the centrality of nodes. In a more realistic scenario, the 
decision between removing either node will be dependent on 
a number of additional factors, such as their purpose within 
the network, the cost of removal/reintroduction, etc. - all 
aspects which should be accounted for in the calculation of 
contribution values for each node in the network. 



Relying on the results of simulations may not be enough, 
and it is important that the effects of all possible actions are 
captured in the calculations of contribution values of nodes. 
Consider the case of an infected node “K”, connected to a 
susceptible node “V”. Because our infection model is a 
probabilistic one, it's not necessarily the case that node V will 
become infected in the very next step of our simulation. 
Intuitively however, the choice of patching node V over doing 
nothing is clearly the better option, as it prevents the node 
from being infected in the case that we “lose the dice roll”. 
Our network health calculations capture this benefit of 
patching a node in step 3, by increasing a node's contribution 
value if it's not susceptible to being infected, which will 
consequently improve the overall network's health score, and 
increase the perceived value of taking that action. 

V. EXTENDING THE FRAMEWORK 

As discussed previously, the method we are proposing 
allows for the addition of extra steps in the calculation of each 
node's contribution value, based on the amount of data 
available for the network in question. The attentive reader 
might at this point realise the fact that the definition of the 
“best” and “worst” network states is dependent on the steps 
we choose for determining the contribution value of each node 
in the network. In fact, the implementation described in our 
tool has one such caveat. When accounting for whether a node 
is susceptible to being infected or not, we have imposed an 
additional requirement on the definition of the best possible 
state. In allowing for this action to be captured in the 
contribution value calculation, the best possible state for the 
network is not only one where all of the nodes in the network 
are free from infection, but also where all of the nodes are 
immune to the malware in the first place. 

The determination of the best and worst possible states for 
any network is thus a subjective   one, dependent on the data 
available for the network as well as the use cases we are 
interested in. However, one caveat seems almost universal to 
any network, which is related to the network's original 
topology and additions to it. Take for example, the ability to 
deploy additional firewall devices, with the intent of 
segregating the various nodes in a network. If these additional 
firewalls are not accounted for in the original calculations of 
best and worst network health scores, this leads to the 
unintended consequence of recursively improving the 
network's health by continuously adding new firewalls to the 
network. Similarly, the health score could continuously 
decrease as these new devices become infected, leading to a 
network state with more infected devices than total devices 
present in the original network topology. 

This idea is not only true for the network topology, but also 
attributes of the devices themselves. We run into a similar 
problem if, for example, the number of services running on a 
device increases their contribution value. There is a virtually 
infinite number of services that can be deployed on a device, 
and thus this would again lead to recursively increasing the 
health score of a network by continuously starting new 
services. In this case, a maximum limit to such a calculation 
step, or a fixed definition of which services count for the 
contribution value of a device becomes necessary. 

One aspect we have not demonstrated is the definition of 
“negative” steps in the calculation of contribution values. Say 
that we want network devices to have a maximum of three 
connections, as any more connections might be considered a 

significant security risk. We can achieve this by adding a new 
contribution value calculation step that reduces the 
contribution value of a given node if it has more than three 
connections. Figure 10 is an example of such a network, where 
we have defined that the contribution value of a node is 
reduced by half, if it has more than 4 connections. In the case 
that the affected nodes are not compromised, this works 
correctly, as we are essentially penalising excessive 
connections. However, if this node were to be infected, this 
step no longer makes sense, as an infected node with 
additional connections would pose a larger risk to the network, 
and so its contribution value should not be penalised in the 
same manner. In such cases, the current state of the node (i.e., 
whether it is infected or not) should be considered to decide 
the contribution value of a node. 

 

Figure 10: Example of negative calculation steps 

VI. DISCUSSION 

In this paper we have proposed a method of assessing the 
health of a computer network during a security incident. The 
method works by calculating a contribution value for each 
device in the network, meant to encapsulate how important 
that device is for the overall network's function. This 
contribution value can be positive (if the device is benign) or 
negative (if the device is malicious), and the calculation is 
based on the data available for the network, as well as the 
intended use cases and possible action space for a defending 
agent. Elements such as the device's centrality in the network, 
or the services it runs affect the contribution value of the 
device, and we exemplify the use of our method with our 
internal malware modelling and threat response tool. The use 
of a network health score allows for a security professional to 
understand how a network's state evolved over the course of a 
malware outbreak and enables the selection of mitigating 
actions based on their effects on the network's health. 

It is important to emphasise that the framework we have 
presented in this paper \textbf{must} be adapted to the 
individual needs of a network. The question behind what 
makes a device "important" to the network is dependent on the 
data available for said device, and will differ drastically 
between different network scenarios. 

Throughout the paper, we have repeatedly used devices's 
centrality as part of the calculation of their contribution values. 
However, we must consider that a for 'raw' physical topology, 
like the ones we have presented in this paper this may not be 
the most suitable. For example, while a node may be 
'physically' connected to a switch, which in turn is 'physically' 
connected to another device, both end devices could have a 



'virtual' connection between them. In this sense, a malware 
looking to spread from device A to B might not even be aware 
of the switch in the middle, yet this does necessarily prevent 
it from spreading from one device to another. As such, the 
topology used for the calculation of health score should take 
this knowledge into account, again, if such data is available. 

Currently we leave the determination of what makes 
devices 'important' to the network as a question for each 
network operator to decide, however future work is warranted 
for determining a general consensus of what elements are 
more often critical in assessing a healthy network state. 
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