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Abstract—Connected and autonomous vehicles (CAVs) are
an emerging technology that will introduce new threats to
the general public. Impending standards (such as ISO21434)
demonstrate that there is a real cyber security risk and a need
for supporting infrastructure in the form of vehicle security
operations centre.

In this concept paper we discuss some of the issues facing
vehicle security as the technology matures over the next few years
and look at how epidemiological models for malware might be
developed to address concerns over vehicle cyber threats.

We detail our development of Mobius, a bespoke tool for
simulating and analysing malware events in CAVs and explore
how the technology might be applied to support real-world
decision making.

As a part of the need for cyber resilience, we suggest there is
a key role for vehicle simulation software capable of modelling
cyber threats to assist with threat analysis and decision making
for highway authorities, OEMs and fleet operators, amongst
others. We present a summary of compartmental epidemiological
models and the role they can play in understanding malware
propagation for CAVs.

Index Terms—autonomous, geospatial, simulation, transport,
vehicle, security, malware, propagation

I. BACKGROUND

The automotive market today is changing rapidly with both
vehicles and infrastructure becoming more connected. New
models arriving on the market are exchanging an increasing
volume of data which is being shared with other vehicles,
infrastructure and increasingly to the cloud and with tech-
nologies at its ‘edge’ which are providing insight, analytics
and control mechanisms which did not exist before. Beyond
these connected capabilities there are the less understood
autonomous technologies which will introduce even greater
data sharing needs.

The de facto standards for describing vehicle automation
were proposed in a recommendation document by SAE. In the
model, levels 1 to 3 describe driver assistance whilst levels 4
and 5 describe high or full operational autonomy . As these
levels are realised, the requirements for cyber security become
more significant. Global uptake of L3-L5 vehicles is expected
to reach 40% by 2030, and 80% by 2035 [1] and the Zenzic
roadmap anticipates cyber security becoming a core part of
vehicle approval in 2030 [2].

This work was initially carried out as part of ResiCAV, an InnovateUK
project funded by the Centre for Connected & Autonomous Vehicles.

A number of cyber attacks against modern vehicles with
varying levels of autonomy have been identified in the lit-
erature, against features including tyre-pressure sensors [3],
LIDAR ranging [4], wireless entry [5] and infotainment sys-
tems [6]. These attacks can have superficial consequences such
as the ability to display messages, may compromise security
of the vehicle and bypass locking mechanisms or compromise
safety by endangering occupants and other road users. These
attacks may come from nation states, criminal organisations,
hacktivists/artists and fraudulent operators [7].

A significant quantity of data is generated during routine
CAV operation including sensor data, bus messaging, third-
party communications and observations. There are many par-
ties with an interest in this data ranging from manufacturers,
local authorities, law enforcement and commercial entities
for their own applications. Vehicle security operations centres
(VSOCs) will be vital in the future for aggregating and
analysing the vast amount of data.

The use of rule-based and other more intelligent mecha-
nisms for automatically classifying data is a necessary tool
but can also lead to alert fatigue. Existing automatic techniques
may also struggle to recognise threats not previously identified.
Consequently, the continued development of artificial intelli-
gence and machine learning techniques to analyse data is a
key requirement of SOCs and an approach to anomaly-based
threat detection is required.

A. Malware Simulation for CAVs

Infectious disease modelling in the literature can be traced
back to Bernoulli in 1760 [10] leading to a modern significant
understanding with models by Kermack and McKendrick in
the 1930s [11], [12] and a significant body of established
research by the 1970s [11].

There are a number of epidemiological models for mod-
elling the propagation of malware, one of the most significant
being the 1991 Kephart-White models [13] which simplify
individuals in a network to a system composing of a number
of discrete states such as susceptible, infected and recovered.
These are normally referred to as compartmental models, one
of the simplest and well-known is the SIR model. The SIR
model assumes an immunity once an individual has recovered,
which is why modifications such as the SIS and SEIR models

57



may be favoured. An overview of various models is shown in
Figure 1.

In all of these compartmental models, the transition rate is a
key aspect, that determines the rate at which individuals move
between compartments. These transition rates allow tuning
the model for different virus characteristics. The distinction
between compartments and their transition states is important
depending on the nature of the disease (in either the biological
or cyber domain), for example, an exposed individual not yet
infectious may be an undetected incubator.

For the SIR model, the transition rate between susceptible
and infected (βSI) is defined as:

d( S
N )

dt
= −β SI

N2
(1)

where S is the susceptible population, I is the infected popu-
lation and N is the sum of all three. β is average contacts per
individual multiplied by probability of transmission and SI

N2

is the fraction of contacts resulting in a susceptible individual
becoming infected.

Between infected and recovered, the transition rate is γI ,
simply a proportion of the infectious population (I). This
maybe adapted for a time period t with:

γ =
1

t
. (2)

For malware with a human interaction element, the Maki-
Thompson rumour model has also been used [14]. These
and related models have been successfully applied to large
computer networks [15]–[17].

Mobile systems present new challenges to modelling mal-
ware propagation due to their transient nature and diversity of
communication channels. Mickens and Noble [18] highlighted
that the Kephart-White approach is insufficient for modelling
propagation in mobile environments. This is because propa-
gation relies on a statistic of average connectivity for each
node. Mickens and Noble propose a new approach known as
probabilistic queuing to account for node velocities and non-
homogeneous connectivity.

II. MOBIUS: TRAFFIC SIMULATION DASHBOARD

Mobius (shown in Figure II) is a combination of traffic sim-
ulation and web-based geospatial analytics. It was developed
with the aim of enabling anomaly detection in a population
of mixed manual, semi-autonomous and autonomous vehicles.
The aim is to assist in identifying vehicles that may have
become compromised as well as supporting planning and
decision making processes.

A. Simulation of Urban MObility (SUMO)

SUMO [20] is an EPL1 licensed, open-source, microscopic
road traffic simulation package. It is the foundation upon
which the Mobius back-end is built. Within SUMO, is a
traffic control interface (TraCI), which provides a client/server

1https://www.eclipse.org/legal/epl-v20.html

(a) The most well-known SIR model assumes immunity following infection
and transmission decreases as the pool of susceptible individuals is reduced.

(b) The SIS model accounts for the risk of re-infection.

(c) The role of vaccination in protecting a subset of a population and
modifying transformation rate is done with the SIRV model.

(d) The SEIR model is suitable for infections with an incubation period.

(e) The SEIS model accounts for incubation periods with a lack of immunity.

(f) The carrier model considers disease that may lie dormant.

Fig. 1. Individuals are placed in one of a number of compartments, transition
rates define how individuals move between these and model propagation of
disease. Different compartmental models are used depending on the nature of
disease. Not all of these models may be directly applied to the cyber domain

architecture for accessing SUMO. This allows predefined al-
terations to the simulation, retrieval of values or the running of
custom code during the process. After installation of SUMO,
a scenario is generated for a predefined area, which converts
a geographical topology of available traffic routes into graph’s
stored as XML, that vehicles are simulated moving in. The
regions analysed were Central London, Manchester, Oxford
and Martlesham. Supported vehicle types varied by region as
appropriate, modelling ships, cars, buses, trucks, motorcycles,
passenger vehicles, bicycles and pedestrians.

B. Visualisation

The front-end of Mobius is entirely web-based and uses
common technology rendering libraries using Node.js and
Express such as leaflet (for maps), bootstrap (a framework for
HTML, CSS and JavaScript elements) and Vis.js (for timeline
dynamics).

The core visual component is a geographical map, with
markers for each vehicle in the simulation. Vehicles size, shape
and colour can be altered depending on the type of simulation
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being displayed, for example, allow for a distinction to be
made between infected vehicles.

C. Simulation Management

Simulations are managed through and SQLite database,
which stores the simulations initial parameters and basic
information such as the running length when simulated. The
simulation itself is stored as a JSON file, with an id that links
itself to the simulation in the database. The file is organised
as GeoJson by vehicle/simulated entity, with details on the
type of vehicle, its speed and position at fixed points of
time. The creation of new simulations is controlled using an
HTML form, containing parameters for the simulation. Node.js
spawns a child process, which from the a virtual command
line runs a python file for creation of the simulation given the
specified parameters. The simulation is stored in the database
and marked as pending in the front-end, until the child process
finishes, at which point the database is updated with the new
simulation for visualisation purposes.

D. Application Areas

Mobius has a number of potential application areas that we
have investigated.

1) V2X Malware Propagation: Our primary use case is in
ascertaining the risk that malware propagating over the broad
number of communication channels present in modern and
feature vehicles may pose. Simulation of malware propaga-
tion amongst a transient population of vehicles through V2X

(vehicle-to-vehicle, infrastructure, person, etc.) communica-
tions involves the use of biological epidemiological models
to understand how malware may behave across a population.

2) Vehicle Impacting Malware: Our simulator has a num-
ber of pre-programmed malware behaviours such as forced
braking and constrained acceleration. There is however a
broader variety of malware that may impact the behaviour of
a manually driven or autonomous vehicle.

3) Autonomous vs. Manually Controlled Vehicles: Vehicles
are rarely designed to operate in isolation, understanding the
behaviour and interactions of a population of vehicles is
invaluable to ensuring operational safety.

Driver assistance mechanisms are already commonplace,
and these have an impact on driver behaviour. Understanding
the consequence of increased awareness and propensity to
recover due to such systems is important to understanding the
broader societal impact such levels of automation have.

As we work towards levels of complete autonomy for
vehicles, the percentage of autonomous vehicles on the road
will increase. It’s still unclear how exactly a mixed population
of manual and autonomous vehicles will interact and there is
a potential for autonomous vehicles, operating for maximum
safety, may be subverted by manually driven ones.

The increase of automation will change the behaviour of
vehicles, due to a reaction to driver assistance [22], fully
autonomous characteristics [23] and human response to au-
tonomous vehicles [24]. Monitoring the behaviour of vehicles
as witnessed through smart infrastructure is one mechanism
through which cyber attacks may be identified.
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4) Non-Security Applications: As a tool for analysing the
movement of vehicles Mobius has many potential application
areas that we intend to explore in future research.

Electric Fleet Organisation: Electric vehicle infrastructure
is generally limited in comparison to traditional fuels. This
leads to an increased need for forward planning and resource
management.

Mesh Network Organisation: The use of drones and portable
towers to establish ad hoc wireless networks is an established
solution in emergency scenarios [25]. One of the key chal-
lenges in this application is maintaining sufficient coverage,
particularly as nodes in the network may need to replaced
over time.

Civic Planning: Traffic management is a major concern for
city planners and Mobius can enable simulation of a variety
of scenarios, with different vehicle types and behaviours. New
challenges will be introduced due to the change in behaviour
that automation will bring and the ability to simulate a pop-
ulation transitioning from manually operated to autonomous
vehicles will be essential to optimising infrastructure.

Blue Light Planning: Data on the geographical distribution
of medical and criminal incidents, zoning and demographics
can be valuable in strategically placing blue light resources.

III. SIMULATING MALWARE FOR CAVS

Mobius combines traffic simulation with abnormal vehicle
behaviour controlled by epidemiological models to simulate
malware events in CAVs.

A. Simulating Malware Events

The first stage of simulating malware events was to identify
a number of potential scenarios that are likely to affect CAVs.
These include attempts of theft, deliberate operator misuse or
malicious attacks. Each of these scenarios can have a different
impact on vehicle behaviour, to model these we create new
vehicle classes for SUMO, each representing a different form
of malware, with an associated change in behaviour. This
included:

• Uncontrolled acceleration
• Speed limiting
• Forced breaking
• Erratic control / lane discipline

TraCI enables control of the simulation and at each step, an
analysis of vehicle positions is carried out and a probability of
infection is calculated using the model that has been defined.
In line with that calculation, vehicle classes are changed to an
infected form, in line with the parameters of the simulation.

The initial pool of susceptible vehicles is configurable, and
typically based on local statistics of vehicle distribution, so
that malware impacting a specific component (such as an
ECU present in certain vehicles from a certian manufacturing
date) can be simulated. The simulation also allows the user to
specify both the type of vehicle and the percentage of those
vehicles that are susceptible.

B. Malware Propagation

To simulate epidemiological spread of malware between
vehicles, a base compartmental epidemiological model was
specified. The model accepts a parameter specifying a subset
derivative that the simulation can follow. After an initial
infection at a specified time, at each simulation step for each
infected vehicle, the non-infected vehicles within a stated
proximity are collected and infected with a probability for
a length of time, after which the vehicle either enters a
cured state or a normal state (depending on the type of
epidemiological model). Its also important to note that both the
type and proportion of vehicles that are susceptible to infection
can both be altered.

We implemented the following models:
• SIR malware propagation model
• SIS malware propagation model
• a single infection instance
In the single infection instance we target a single vehicle

for infection, with no ability for malware to spread to other
vehicles. SIR allows us to model a scenario where vehicles
can be permanently patched and SIS allows us to investigate
scenarios where vehicles can be recovered, but not patched.

As pointed out by Mickens and Noble [18], the standard
compartmental models are not suited to mobile networks due
to reliance on average connectivity. Trullols-Cruces et al. [19]
explored an SIR model for large-scale vehicular networks. In
our implementation on the compartmental models, we evaluate
the transition rate (βSI) at each step in a simulation cycle for
only a localised set of vehicles, inline with some form of inter-
vehicular (V2X) communication.

These models require further development to account for
a greater range of scenarios. For example, we posit that
smart infrastructure (traffic lights, signage, etc.), test and
diagnostic equipment (in vehicle workshops) and consumer
technologies may be vectors for infection. Fuel stations and
parking facilities could become “super spreaders” due to the
high density of vehicles and prolonged proximity.

IV. RESULTS

We present here initial observations from our experiments
with SIS modelling. It should be noted that a number of
parameters such as range, infectious period and behaviour can
be configured. These will vary based on the precise nature of
the malware and the region of the simulation.

In these experiments we assume a single source of infection
has been introduced to a locality and a roadside process (such
as factory reset of infotainment system) can be used to recover
the vehicle and eradicate the malware after a period of 100
seconds. During this 100 seconds, the vehicle will be forced
to brake. Any susceptible vehicle that comes within a pre-
defined distance is at risk of becoming infected also. There is
no latency from infection to effect.

434 vehicles with randomised journeys were introduced to
a transport network derived from an area of Central London
over a two hour period, with the majority of travel occurring
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Fig. 2. Infection spread through V2V communication in Central London at varying rates of vehicle susceptibility in an SIS model. The data is for a two hour
period. With a susceptibility of 25% the malware does not persist throughout the population. With 50% and 100% susceptibility, the infection remains until
traffic reduces.

in a 1 hour slot. Cars, motorcycles, HGVs and buses were all
potentially vulnerable infection with a distance of 20-metres
for infection, but we varied the percentage of those that were
susceptible in each test, starting with 25% through to 50% and
lastly with 100%.

Figure 2 shows a simulation of infection in a busy city
area with varying levels of susceptibility over a two hour
period with a period of high traffic. This graph demonstrates
the value of diversity in computer networks, with a higher
diversity, there is less likely to be a common vulnerability and
subsequently lower susceptibility. We can see that with a low
susceptibility of 25% the transient nature of vehicles means
the likelihood of transmission remains low and all vehicles
eventually recover. With higher susceptibility, the infection
persists in a population until the traffic is reduced.

In our second round of experimentation we investigated
the role that traffic density has on the severity of infection.
In Figure 3, there was an initial peak of infection, but due
to the low-likelihood of vehicles becoming infected and the
low number of vehicles on the roads, the infection rapidly
disappeared.

The results from this experiment show that with a larger
population, malware can persist for longer and potentially
cause reinfections and have a larger impact, even with a
relatively low rate of infection.

It is worth noting, that as vehicles were forced to brake when
infected, there is limited opportunity to travel the network and
spread the malware - a susceptible person must come into
proximity. Not all malware will follow this pattern.

V. CONCLUSIONS

We have presented an overview of the compartmental mod-
els that play an important role in understanding the nature of

disease and how it is best managed. These models have been
successfully applied to the cyber domain, but mobile networks
present new challenges. The application of compartmental
models to mixed autonomous vehicle networks is a novel
contribution. There already exist many popular variants of
the compartmental models and we have demonstrated the
applicability and suitable modifications for the purpose of
cyber resilience of CAVs through Mobius, novel software
for simulating malware propagation and impact in vehicle
networks. Our simulations have demonstrated that diversity in
vehicle technology can be an effective barrier to transmission
of malware through a population.

Further work is needed to define models that account
for the diverse potential vectors of disease transmission that
are not present in traditional epidemiological models due
to biological constraints. Computer systems can often be
“inoculated” against specific attacks once they are known,
where a susceptible or infected machine can be updated (over
the air, or at a garage), the SIRV model for example may be
useful in this regard [21].

Information on smart infrastructure and the various network
nodes that may be responsible for vehicles other than the ve-
hicles themselves needs to be accounted for in future models.
For example, signalling, fuel stations and parking facilities are
potentially risky “super spreaders” of malware. In addition
there are numerous existing and emerging technologies for
communications between CAVs and infrastructure, modelling
of these and their specific characteristics would be desirable
for ascertaining the risk of new technologies.

Geospatial analytics will play a crucial role in analysing
the behaviour of vehicles and detecting anomalous behaviour
when intelligence from intra-vehicle IDS may not be sufficient.
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Fig. 3. Results for a trial of low susceptibility rates with varying traffic density. The infection persists for longer, affecting a greater percentage of vehicles
for a longer period of time as population increases.

As new standards that necessitate establish security operation
centres2, there is an increasing need for robust technology to
understand vehicle behaviour.
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