
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266740981

Teaching Computational Thinking by Playing Games and Building Robots

Conference Paper · December 2014

DOI: 10.1109/iTAG.2014.15

CITATIONS

21
READS

544

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Bilateral Comparison View project

Technocamps View project

Jonathan Francis Roscoe

BT

8 PUBLICATIONS   22 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jonathan Francis Roscoe on 30 November 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266740981_Teaching_Computational_Thinking_by_Playing_Games_and_Building_Robots?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266740981_Teaching_Computational_Thinking_by_Playing_Games_and_Building_Robots?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bilateral-Comparison?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Technocamps?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Francis_Roscoe?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Francis_Roscoe?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/BT?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Francis_Roscoe?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Francis_Roscoe?enrichId=rgreq-f8bdeb8cf236db3e91552e13c2df5999-XXX&enrichSource=Y292ZXJQYWdlOzI2Njc0MDk4MTtBUzo0MzM5Mzc0NzU0Nzc1MDRAMTQ4MDQ3MDE2NDU5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Teaching Computational Thinking by Playing Games
and Building Robots

Jonathan Francis Roscoe
Computer Science, Aberystwyth University

jjr6@aber.ac.uk

Stephen Fearn
Infinity, Aberystwyth University

sdf@aber.ac.uk

Emma Posey
Technocamps, Aberystwyth University

emma.posey@technocamps.com

Abstract—Computing in schools has gained momentum in the
last two years resulting in GCSEs in Computing and teachers
looking to up skill from Digital Literacy (ICT). For many students
the subject of computer science concerns software code but
writing code can be challenging, due to specific requirements on
syntax and spelling with new ways of thinking required. Not only
do many undergraduate students lack these ways of thinking, but
there is a general misrepresentation of computing in education.
Were computing taught as a more serious subject like science
and mathematics, public understanding of the complexities of
computer systems would increase, enabling those not directly
involved with IT make better informed decisions and avoid
incidents such as overbudget and underperforming systems.

We present our exploration into teaching a variety of
computing skills, most significantly “computational thinking”,
to secondary-school age children through three very different
engagements.

First, we discuss Printcraft, in which participants learn
about computer-aided design and additive manufacturing by
designing and building a miniature world from scratch using the
popular open-world game Minecraft and 3D printers. Second,
we look at how students can get a new perspective on familiar
technology with a workshop using AppInventor, a graphical
Android programming environment. Finally, we look at an
ongoing after school robotics club where participants face a
number of challenges of their own making as they design and
create a variety of robots using a number of common tools such
as Scratch and Arduino.

I. INTRODUCTION

Modern computing ubiquity has led to basic computing
skills (or “digital literacy”) becoming an innate ability of most
young people. Unfortunately, the UK education system has
failed to keep up to date and upskill students beyond the es-
sentials. Published in January 2012, the Royal Society’s report
“Shutdown or Restart?” [1] stated the need for recognition of
computer science as a rigorous academic discipline of great
importance in schools and described the current delivery of
computing education as “highly unsatisfactory”.

We use the term “digital literacy” [2] to refer to common
and basic computer use, such as typing, word processing
and web browsing. These skills are taught under the vague
term “ICT” and are fast becoming redundant as a result of
ubiquitous exposure to computing. More recently, the term
“computing” is being used to replace ICT and attempt to
clarify the scope and nature of the subject.“computing” has
a much broader scope and shifts focus from using computers
to understanding how computers work and behave - a topic

of importance to an increasing number of the population,
regardless of their career or interests.

For those not necessarily employed in the computing
industry digital literacy skills improve communication through
email, ease learning through utilise online resources and pro-
vide new marketing opportunities. Beyond that understanding
of the broader issues of computing could enhance the ability
to innovate business operations, develop new tools and under-
stand issues previously considered to be exclusively within the
arcane domain of the dreaded IT department.

Thanks to the maker community [3], people are shifting
from being users of technology to creators - leading to a a
new era of innovation by hobbyists and professionals alike.
Advanced computing skills open up a world of opportunities
for developing new tools, toys and experiments.

Technocamps is one project that aims to improve computer
science education for 11-19 year olds through a variety of
engagements with partnered universities across Wales. In this
paper we look at the importance of going beyond basic digital
literacy and some of the engagements designed to teach a core
concept in computer science - “computational thinking”.

A. Computational Thinking

Computational thinking is a fundamental problem solving
technique that has applications beyond computing [4], [5] and
is considered by many to be a fundamental life skill [6].
Although the term is open to some interpretation, generally
accepted key principles of computational thinking include:

• Abstraction - solutions are often not straightforward
and require multiple levels of thought and application

• Logical analysis - making the most of the information
you have to deduce solutions

• Algorithmic thinking - a solution to a problem often
has several steps, even repetitions and requires strategy
and formulation of a set of rules

• Efficiency - resources are previous, often this refers
to the time required to solve a problem

• Innovation - observing the world and noticing where
things might be improved can lead to major advance-
ments and push boundaries

Computational thinking is often brought up in the context
of learning computer programming, a notoriously difficult
task [7] and whilst many struggle others seem to excel.



Fig. 1. Student interest in subjects after attending the Printcraft bootcamp.

Yet there are no studies suggesting individuals may have a
natural aptitude for programming. Programming languages are
a formal combination of structures and commands that allow
algorithms (any step-by-step set of instructions) to be imple-
mented. Without the ability to effectively dissect a problem
and design a solution it can be difficult to translate intentions
into code. One argument for the difficulty that many computer
science undergraduates face when they start programming is
that problem solving with computational thinking is not taught
as a skill in the same way arithmetic or writing is.

When building a computer program it is not a simple task
of writing code until it is done. Many problems must be broken
down into individual tasks each with their own solutions.
Across the world, thousands of developers work seemingly
on isolation, yet collaboratively on projects 1 and are able to
do this thanks to the separation of concerns and abstraction
resulting from a computational approach to problem solving.

But it is not just programming challenges that benefit from
computational thinking. Our reason for focusing on the skill of
computational thinking in this paper is not only its significance
to the field of computing but also its application to literally any
field [4], [8].

II. ENGAGEMENTS

Technocamps Aberystwyth performs a variety of style
of engagements such as bootcamps (half-term, multi-day
courses), workshops (in-school, 3 hours) and an after-school
club. Here we look an example of each and the resources
utilised to enthuse students with a passion for technology
whilst teaching transferable skills.

A. Printcraft Bootcamp

Minecraft 2 is a hugely popular, multiplayer sandbox game
environment where participants can build with others online. It
attracts a massive number of users of all ages and has proven
efficacy as an educational tool [9], [10]. Most often, Minecraft
is compared to LEGOTM for the style of play.

3D printing is a process, also known as Fused Deposition
Modelling, in which 3D structures are made through the

1Many examples are open-sourced on sites such as http://github.com/
2http://minecraft.net/

extrusion of a molten material at precise locations. As the
extruding tool moves and the material cools and hardens, a
solid structure is formed. The path of a 3D printers extruder
is controlled with a series of low-level machine instructions.
The generation of the instructions can be a complex problem
as most efficient paths for travel and details of interior support
structure are calculated and so they are usually generated
automatically from computer-aided design (CAD) software.

We used Printcraft 3 as a means to combine Minecraft with
real-world manufacturing for teaching fundamental computa-
tional, science, technology and engineering concepts without
the need to become familiar with complex CAD software.
For example, when working with a 3D printer a number of
aspects must be considered. As in Minecraft, it is not possible
to place a block in mid-air, necessary support structures
are required. Similarly, bridge gaps will often collapse and
necessitate a series of steps to form an adequate arch (as
seen in real world architecture). Drawing similarities from
the virtual world of Minecraft and the physical world enables
students to experiment with engineering concepts and design
to develop an appreciation of issues going from concepts to
implementation.

Students are organised into teams, each tasked with the
goal of a specific building or group of buildings (such as a
school, or housing). Teams are allowed to self-organise but
are encouraged to collaborate with one another.

But it is the concepts of abstract design, combined with
numerical control that we emphasise for their similarities with
computational thinking.

Fig. 2. A town, designed in Minecraft then built with 3D printers. Students
are taken on a journey through design and manufacturing over the course of
a 2-day bootcamp.

Particpants of the Printcraft bootcamp were all aged be-
tween 11-19 and were challenged to work in teams to design
(in Minecraft) and build (with 3D printers) a model city. The
bootcamp was assessed in the form of a questionnaire after
the event that asked a number of technical questions as well
as interest in various subjects (Figure 1).

Printcraft is a good “gateway” tool offering an approach to
increasing understanding in computational thinking, computer-
aided design and manufacturing in a way that is engaging and
stimulating for pupils. The learning outcomes of the bootcamp
include understanding of:

3http://www.printcraft.org/



• 3D printing as an engineering tool

• Software and hardware processes behind 3D printing
(numerical control)

• Role of computer-aided design (CAD) in engineering

• Inter- and Intra- team collaboration

• Project planning and team role development

B. AppInventor Workshop

Mobile devices such as smart phones or tablets are quickly
replacing desktop computers for basic tasks such as email
and web browsing. Many social media services are dedicated
to mobile use and recent trends suggest mobile devices will
overtake desktop computers for browsing in the next couple of
years. As the availability of mobile computing increases there
are new opportunities for development.

AppInventor 4 is a graphical android programming environ-
ment. Graphical programming replaces conventional text based
control structures of programming languages with a drag-and-
drop interface allowing users to connect loops, conditionals, etc
in a visual environment. Graphical programming environments
can be an effective tool for introducing young people to pro-
gramming and the associated computational thinking without
having to worry about syntax or spelling [11].

For many students, their existing familiarity with such
devices gives them some expectations as to how apps work and
what capabilities to expect. Developing their own app reshapes
the way they view the technology.

Over the course of 6 hours, students attending the workshop
first created a rudimentary app by following the example of the
tutor. The goal of this task was to give students a set of tools
and processes that could be applied to use any component of
their choice. Students were specifically shown integer/string
variables, if..else statements and for loops, as well as some
basic components (buttons, accelerometer, images). After this
brief introduction, students were encouraged to design then
create an app related to their studies. Examples included a
“‘babygotchi” childcare game, bird call library and historical
quote generators. Many students used their own initiative to
find audio/visual material on the Internet to use within their
applications.

Figure 3 shows the various components of the Android API
(application programming interface) the 28 apps developed by
students used. We use the API interactions as a rough indicator
of participant interest and ability. The students from these
sessions had no prior programming experience and were aged
17-19. Most enthusiasm came from applications utilising sound
in response to actions as well as dynamic events.

From the workshop, students gained an appreciation of the
complexity of apps often taken for granted and an understand-
ing of how software interacts with the hardware of a device.
The advantage of graphical programming is that logical and
algorithmic skills essential to computational thinking can be
taught in a way that does not intimidate students with un-
necessary complexity. The learning outcomes of the workshop
include:

4http://appinventor.mit.edu/explore/

Fig. 3. 28 student pairs designed and created their own mobile apps after
minimal tutoring. The graph shows how many used various components
provided by AppInventor.

• Understand the purpose of control structures in soft-
ware code

• Appreciate the hardware devices of typical mobile
computing devices (accelerometer/orientation sensors,
touch screen, audio, video, etc)

• Understand a generalised process of software engi-
neering with deployment and development through an
integrated environment

Fig. 4. Example application: “Excuse generator’ that utilises arrays of strings,
the device touch screen and a random number generator.

C. Robotics Club

Our most diverse engagement is via an after-school robotics
club which is an ongoing project with weekly engagements
with a general goal to building robotics projects of the partici-
pants’ own designs. A much broader understanding and range
of skills are required to cover both the hardware and software
aspects and access to a variety of resources including Arduino
microcontrollers and Lego Mindstorms is provided. Figure 5
shows one project - a humanoid robot made from 3D printed
parts.

The learning outcomes of the club include:

• Understand basic electronic circuits and specific com-
ponents (such as light emitting diodes, tranistors and
potentiometers)



Fig. 5. 3D printed head of an Inmoov - an open-source project for a humanoid
robot, selected and built by students at the club.

• Work with popular environments such as S4A (Scratch
for Arduino) and NXT-G for microcontroller program-
ming

• Work with CAD software for printed circuit board
design

There are 22 long-term particpants aged 11-19; a ques-
tionnaire was devised to assess the learning and progress
of particpiants that tested general and specific knowledge
of technical areas. One item of interest highlighted by the
questionnaire was the concept of variables in programming,
with 43% unclear on where they should be used.

The robotics club offers opportunities to work with both
software and hardware which helps reduce the esoteric nature
of some computing aspects and allows participants to work
where they have the most interest, without being forced into
overly unfamiliar territory.

III. CONCLUSIONS

Everyone should have the motivation and means to explore
their world. Computing is now ubiquitous, whether you realise
it or not - when you wear a digital watch, carry a mobile
phone or use an electronic door or use a cash machine - you’re
using computers. Computing furthers industry and science and
improves education. It is only sensible that young people are
brought up with intimate knowledge of computing.

The term “computational thinking” is a common one that
communicates logical, algorithmic processes that can empower
students greater reasoning ability and problem solving. We
have presented three diverse engagements that seek to com-
municate this skill, as well as technical expertise in a way that
is reproducible and engaging for participants.

As computer scientists it is easy to choose topics that
may be of interest and skills that may be of value, but it
is difficult to determine how effective engagements are at
communicating topics and developing new skills. Regrettably,
we have limited empirical evidence for determining how much
students gain from attending these courses. In the future it
would be desirable to formulate a comparable and robust
framework for assessing knowledge gains and reasoning skills
before and after engagement.

To those seeking to teach computational thinking or other
technological skills we hope the engagements discussed here
are of interest. Activities with which participants have existing
interest and experience are easier for many to relate to and the
proliferation of technology means that almost any student has
a subject or platform of interest to them. There are a number
of well-designed educational tools such as AppInventor and
Scratch but other options such as versatile gaming environ-
ments such as Minecraft should not be dismissed as merely a
game and have strong suitability for teaching formal skills in
a less direct manner.

The maker community has led to an uprise in affordable
computing technology for a diverse range of projects that
can suit any need; allowing students to get hands on and
interact with technology in ways not feasible before. Educators
should do their best to immerse themselves in the opportunities
available for new ways of learning both about computers and
with computers.

ACKNOWLEDGMENTS

This work was part of the Technocamps project, funded
by the Welsh European Funding Office with additional support
from the Infinity interactive science and technology exhibition.

REFERENCES

[1] The Royal Society, “Shut down or restart?: The way forward for
computing in UK schools,” 2012.

[2] Y. Eshet, “Digital literacy: A conceptual framework for survival skills
in the digital era,” Journal of Educational Multimedia and Hypermedia,
vol. 13, no. 1, 2004.

[3] C. Anderson, Makers: The New Industrial Revolution. Crown Pub-
lishing, 2012.

[4] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan, and A. L.
Hosking, “A multidisciplinary approach towards computational thinking
for science majors,” ser. SIGCSE ’09, 2009.

[5] P. J. Denning, “The profession of it: Beyond computational thinking,”
Commun. ACM, 2009.

[6] J. M. Wing, “Computational thinking,” Commun. ACM, 2006.
[7] T. Jenkins, “On the Difficulty of Learning to Program,” in 3rd annual

Conference of LTSN-ICS,, 2002.
[8] R. Landau, G. Mulder, R. Holmes, S. Borinskaya, N. Kang, and

C. Bordeianu, “INSTANCES: incorporating computational scientific
thinking advances into education and science courses,” Concurrency
and Computation: Practice and Experience.

[9] D. Short, “Teaching scientific concepts using a virtual world–minecraft,”
Teaching Science, 2012.

[10] S. C. Duncan, “Minecraft, beyond construction and survival,” Well
Played, vol. 1, 2011.

[11] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/266740981

