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Abstract. With the exponential increase in devices connected to the Internet, 

the risk of security breaches has in turn led to an increase in traction for ma-

chine learning based intrusion detection systems. These systems involve either 

supervised classifiers to detect known threats or unsupervised techniques to 

separate anomalies from normal data. Supervised learning enables accurate de-

tection of known attack behaviours but requiring quality ground-truth data, it is 

ineffective against new emerging threats. Unsupervised learning-based systems 

address this issue due to their generalizable approach; however, they can result 

in a high false detection rate and are generally unable to detect specific types of 

each threat. We propose an ensemble technique that addresses the shortcomings 

of both approaches through a semi-supervised approach which detects both 

known and unknown threats in the network by analysing traffic metadata. The 

robust approach integrates A) an adversarial regularisation based autoencoder 

for unsupervised representation learning and B) supervised gradient boosted 

trees to detect the type of detected threats. The adversarial regularisation ena-

bles a reduced false positive rate and the combination of the autoencoder with 

the supervised stage enables resiliency against class imbalance and caters to the 

ever-evolving threat landscape by detecting previously unseen threats and 

anomalies. SANTA’s ability to detect never-before-seen threats also indicates 

its potential to address the concept drift, a phenomenon where the known threat 

changes its behaviour/attack sequence over time. The system is evaluated on the 

CSE-CIC-IDS2018 dataset, and the results confirm the resilience and adaptabil-

ity of the SANTA system against known shortcomings of both supervised and 

unsupervised approaches. 

Keywords: Anomaly detection, Semi-supervised learning, Adversarial regular-

ization, concept drift. 

1 Introduction 

Forecasts suggest that by 2025, there would be more than 75 billion devices connect-

ed to the internet – an approximate of 300% increase from the 2019 baseline [1]. This 

sharp increase in devices connected to the network has increased the network intru-

sion and cyberattack incidents across the globe. According to the report published by 
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AAG [2] in 2023, there has been 125% increase in cyber-attacks in 2021. Undetected 

threats on a network can have severe impact on essential services and facilities for 

businesses; this includes loss of data, revenue, and reputation and threat to national 

security in the case of governments. The development of efficient intrusion detection 

systems has, therefore, become more important than ever in the face of evolving 

threat techniques. 

The challenges in the domain of intrusion detection can be broadly classified into 

two categories; sufficient accuracy in detection of known attack patterns and the gen-

eralization ability to cater to the evolution of attacks. Signature-based intrusion detec-

tion systems address the first challenge through the use of supervised learning-based 

models. These models are trained on large historical datasets [3] to establish signa-

tures or patterns of these attacks thereby enabling detection of future attacks conform-

ing to these patterns. The problem with these models, however, is there inability to 

cope with new attack patterns and types as there are no available signatures to match 

to for these attacks. This second challenge is addressed by anomaly-based intrusion 

detection systems which cater to this using unsupervised learning. These systems use 

models that are trained to cluster data based on different criteria including similarity 

measures. This enables the system to separate normal and anomalous data by assign-

ing different clusters to each. These systems are subsequently able to deal with new 

attacks, which would still be tagged as abnormal or anomalous since they differ from 

the normal behaviour or pattern. Further classification to detect specific type of at-

tacks, however, is limited in these unsupervised learning-based systems as is their 

accuracy in comparison to supervised approaches. In addition to this, these systems 

also suffer from the known generalization problem where models misclassify mali-

cious attacks as normal if their pattern deviates only slightly from normal behaviour. 

Machine Learning (ML)-based Network threat detection systems have proven to 

perform better than traditional intelligence tool to protect networks against cyberat-

tacks. The supervised tree-based classifiers and results on publicly available re-search 

Network dataset is discussed here (Thaseen, S.; Kumar) [5]. The unsupervised net-

work threat and anomaly detection results are not reliable as the accuracy seems to 

vary from 57% to 80% and with very high false positive rate of 20% and over. (Sya-

rif, I.; Prugel-Bennett) [6]. The promising unsupervised work identified is ARCADE 

(Adversarially Regularized Convolutional Autoencoder for Anomaly Detection) (Lu-

nardi, W.T., Lopez, 2022) [4] approach. The ARCADE uses the raw packets instead 

of aggregated NetFlow features to train the network. In the detection stage, ARCADE 

uses both the encoder and decoder networks. A semi supervised approach (J. Ran, Y. 

Ji and B. Tang, 2019) [7] carried on Aegean Wi-Fi Intrusion Dataset (AWID) public 

dataset, the results outperformed other ML approaches. One of the interesting semi-

supervised algorithms that was identified is XGBOD (Zhao, Y. & Hryniewicki, M. 

K., 2018) [8] which is an ensemble semi-supervised algorithm that was experimented 

on non-security datasets.  

 

In this paper, we propose a unique combination of the aforementioned intrusion de-

tection approaches that deals with the known challenges in intrusion detection. SAN-

TA is a robust semi-supervised threat and anomaly detection system that enables the 



classification of both known and unknown attack patterns using limited labelled data 

and adversarial training to reduce the false detections or misses during inference.  

The contributions of the paper are: (a) the combination of adversarially regularised 

autoencoder to enrich data for supervised learning. (b) Evaluation of the pro-posed 

model in terms of accuracy on known and unknown attack types. (c) Evaluation of the 

proposed model in terms of resiliency when less labelled data is available for training. 

(d) Comparison against other known methods of anomaly detection. 

The remainder of the paper is organized as follows; section 2 outlines related work; 

section 3 depicts the architecture of the proposed model and the methodology behind 

each component; section 4 outlines the dataset used in experimentation and its speci-

fications; section 5 details the experimentation and model evaluation results; conclu-

sions are presented in section 6. 

2 SANTA 

Our semi-supervised adversarial network threat and anomaly detection (SANTA) 

system comprises of two modules in a meta-learning pipeline where the output of first 

is used to enrich the input of the second. The simplified flowchart is presented in 

Figure 1 showing the processing pipeline and individual components. The NetFlow 

data is passed through the autoencoder to output the embeddings, also referred to as 

the newly learnt enriched features (through unsupervised representation learning). 

The original NetFlow is then concatenated with the enriched features to produce the 

enriched data. The supervised classifier is provided with the enriched data and learns 

to detect and identify threats and anomalies. Each of these steps are detailed in the 

corresponding sections below – unsupervised learning module and training strategy, 

supervised learning module, data enrichment and finally the inference strategy. 

 

 

Fig. 1. Simplified flowchart showing the key components of SANTA 
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2.1 Unsupervised Representation Learning 

We implement unsupervised representation learning using an adversarially trained 

autoencoder based on work published by Lunardi [4].  

The autoencoder involves the use of 3 deep neural networks – Encoder, Decoder 

and Critic. The Encoder is 4-layer dee  convol tional a toencoder t at “encodes” t e 

input data by learning latent features at each layer to output an encoding of the origi-

nal data. This encoding captures a rich summary of the data and is used to reproduce 

the original data by the Decoder. The Decoder has an architecture similar to the en-

coder network but uses transpose-convolutions to expand the encoding in each step to 

accurately reproduce the original data. 

These two networks are trained in tandem on solely normal (benign) traffic flows 

with the objective of minimizing the reconstruction error, which is the difference 

between the original and reconstructed data. This ensures that the network only learns 

to reconstruct normal traffic and not anomalies thus ensuring that the reconstruction 

error for anomalous flows will be high and can be used to distinguish between real 

and anomalous flows.  

A known problem is that of generalisation; the network can be generic enough to 

be able to reconstruct anomalous data to sufficient quality, despite being trained on 

solely normal data flows thus reducing the ability of the algorithm to distinguish be-

tween anomalous and normal input data. Adversarial regularisation-based training 

using the Critic network in SANTA addresses this issue. The Critic network has a 

similar architecture to the encoder network with a difference in the output layer to 

output a single value as a score (instead of an encoding). It is trained to discriminate 

between reconstructed and original data by output high scores for original data and 

low for reconstructed data. The objective for this network is thus to maximize the 

difference between the scores it gives to original and reconstructed data. This strategy 

of training is called adversarial regularisation owing to the Encoder-Decoder and 

Critic network being trained with opposing objectives. This ensures that the trained 

network is more tightly bound to the data it is trained on (normal traffic in this case) 

and reduces the generic nature of the network thereby addressing the generalization 

problem to an extent.  

The complete architecture of the unsupervised learning module is shown in Figure 

2 below with further details into the precise architecture of each separate network 

summarized in Table 2 in the Appendix. 
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Once the autoencoder is trained using the adversarial regularisation strategy, the en-

coder is used to encode the input data and output rich encodings that are concatenated 

to the original data to provide a more enriched feature space for the next stage of the 

SANTA pipeline. The details of the training strategy are presented below.  

2.2 Training  

During training, the unsupervised module is trained based on two objectives. 

The first objective (ℒA) is to reduce the reconstruction error which is the ℒ2 loss be-

tween the reconstructed (x̄) and original data (x). The ℒ2 loss can be expressed as: 

 ℒ2(x, x̄) = ∑ (x𝑖 − x̄𝑖)
2𝐹

𝑖=0  (1) 

where F is the total number of features in the dataset. The first objective is addi-

tionally regularized to reduce the critic score on the reconstructed data as is expressed 

below: 

 ℒ𝐴 = 𝔼x∽ℙ𝑟
[ℒ2(x, x̄)  + 𝜆𝐴𝐶(x̄)] (2) 

where ℙ𝑟  is the data distribution and 𝜆𝐴 is a regularization coefficient. The second 

objective (ℒB) is to increase the squared difference between the critic score (С) on 

original and reconstructed data which is the adversarial regularization previously 

discussed. This is shown below: 

 ℒ𝐵 = 𝔼x∽ℙ𝑟
[(𝐶(x) − 𝐶(x̄))2] (3) 

The three networks are thus trained in tandem with the decoder and critic essential-

ly training the encoder which is then extracted apart and used to generate encodings 

on the original data to concatenate to the same and pass to the supervised module for 

training. 

Training in the supervised module is encompassed by trees being trained to opti-

mize the multinomial deviance and the module learning to output the correct classifi-

cation for each data instance. 

2.3 Data Enrichment   

As mentioned above, the output from the unsupervised module, in the form of em-

beddings generated by the adversarially trained encoder, is used to enrich the original 

data; the details of which are as follows.  

The data enrichment process involves exploiting the input data to a great extent to 

harness its potential to unprecedented levels to benefit the model development. This 

section describes the parameters, factors, and the process of the data enrichment stage. 

 

The enrichment process produces newly learned representations of the original raw 

input data. Two forms of data that are concatenated to produce the enriched data, A) 

the encoded data from unsupervised stage and B) raw input data. The data enrichment 

is an output of meta learning process where the encoded data is produced by the en-



coding component of the autoencoder which was trained using a critic network 

through the aforementioned adversarial training strategy. Since the autoencoder is 

trained using solely beni n data, t e model’s learnin  is limited to only effectively 

encode benign data, t is limits t e model’s ability to encode malicio s or anomalo s 

flows. Since the encodings represents the raw data in a new latent space the encodings 

of malicious or anomalous data have a unique signature which distinguishes them 

from normal or benign data and  thus helps the subsequent supervised model to detect 

and identify known threats, unknown threats and to some extent address the concept 

drift as is evident in the results from experiments documented in section 4; the specif-

ic evaluation of the data enrichment process is discussed in the section 4.2.  

 

Delving deeper into the enrichment process it involves generating the embeddings (e) 

for input data (dinput) and transforming the embeddings by normalizing and adding 

weights to form the transformed embeddings (eT) as represented in equation 4.  

 𝑒𝑇 = 𝑁(𝑒) ∗ 𝑈 (4) 

where N(e) represents the normalized embeddings and U represents the weights; is 

a real number chosen through an empirical process. There is ongoing research to find 

an optimal way to produce fine-tuned weights for the embeddings. 

 This is followed by normalising the input data, and finally concatenating the trans-

formed embeddings with the normalised input data to form the final enriched data (dE) 

which is represented in equation 5 below. 

 𝑑𝐸 = 𝑒𝑇 + 𝑁(𝑑𝑖𝑛𝑝𝑢𝑡) (5) 

where N(dinput) represents the normalized input data. 

 

In the IDS-2018-V2 dataset with originally 43 features, the label and the descrip-

tion of labels was removed, and the total number of features used was down to 41 

dependent variables. The length of embeddings extracted from the unsupervised stage 

is 6 based on the architecture of the autoencoder finalised by an empirical process of 

hyperparameter tuning. The 6 real-valued embeddings, multiplying weight value (U) 

to the normalised embeddings and further concatenating with normalised input data 

containing 41 dependent variable produces 47 real-valued features, which is the size 

of the enriched data (dE). This enriched data is used to train the supervised gradient 

boosted tree classifier. 

2.4 Supervised Learning 

The supervised learning algorithm used is a gradient boosted tree which offers gener-

alisation of boosting to arbitrary differentiable loss functions, based on work by 

Friedman [15]. The encodings from the previous stage are concatenated to the original 

data to form the input for this stage of processing which takes in labelled training data 

and learns to output a classification on each flow of data. 



The complete architecture for this supervised stage of processing is shown in Fig-

ure 3 below. 

2.5 Inference 

In the inference stage, the trained encoder is used to generate encodings to enrich the 

data before passing it on to the supervised module for threat classification. SANTA is 

thus able to identify each individual class that it was previously trained on.  

In the case of previously unseen data, we introduce a post processing step where 

the confidence scores on each class are used to determine how confident the model is 

in its predictions. Ideally, for previously unseen classes the model confidence scores 

on each known class will be low. Hence thresholding measures on the scores for each 

class are used to ascertain whether the input data belongs to the known classes or 

should be classified as a new but generic anomaly class.  

For example, a data instance with a confidence score of less than 50% for all the 

known classes (including the normal class) can be considered as a new anomaly or 

attack pattern. The threshold is currently intuitively set at 50% using manual inspec-

tion of the results. The inference on new data is explained in further detail in section 

4.2. 

3 Dataset 

The SANTA model was experimented using two datasets, A) an internally generated 

synthetic carrier data from the preconfigured network infrastructure and B) CSE-CIC-

IDS2018-V2 dataset [10]. Both the datasets comprise of a form of network metadata 

known as NetFlow data. NetFlow Is a Network Protocol Developed by Cisco for Col-

 n  t

 ata  ncodin 

  ic 

 eat res 

 ncoder

 oncatenate

 radient

 oosted

Tree  eni n

 ns  ervised

 earnin 

S  ervised

 earnin 

 nric ed

 eat re

S ace

T reat Ty eT reat Ty eT reat Ty eT reat Ty e

Fig 3- SANTA complete architecture (Inference) 



lecting IP Traffic Information and Monitoring Network Flow. The details of the two 

datasets used for experimentation are as follows. 

3.1 Synthetic Carrier dataset 

The initial analysis and testing of the SANTA model was carried using the synthetic 

carrier data. The synthetic carrier data refers to the aggregated NetFlow generated 

from a custom experimental setup. The data itself is confidential and therefore we 

have limited the discussions and the results to appropriate levels and focusing more 

on the CSC-IDS-2018-V2 dataset-based results. 

 

The synthetic carrier data is a small dataset that comprises of benign and port-scan 

activity type flows. Port scan activity consists of a variety of techniques that aim to 

discover information about networks and hosts. The discovered vulnerabilities could 

be exploited in a future attack which could have severe consequences. Port scans may 

be indicative of reconnaissance by threat actors, but they are a common activity for 

security teams to assess and monitor networks.  

 

The dataset consists of raw NetFlow containing predefined set of features and a time 

windowed pre-processing technique is applied to extraction 17 dependent variables. 

Depending on the value set for time (t, (mins)) in time windowing the volume of ex-

tracted flows are generated. The lower the time(t) value, higher number of extracted 

flows and vice versa, however at any instance time(t) can only be positive and the 

total n mber of extracted flo s can’t exceed t e vol me of ori inal ra  Net lo .  n 

our experiment, a time(t) value of 30(mins) is applied on the raw NetFlow data. The 

timestamp is used for each observation in the dataset to partition group the data by 

specified time intervals, which can be assumed as time frequency-based aggregation 

of the data. This aggregated data is used to extract some features based on pre-defined 

empirical relations, which results in the final processed dataset. The table below illus-

trates the pre-processing description. 

Table 1. Synthetic carrier dataset description 

Data Type Raw NetFlow Time windowed (Mins) Extracted Flows Data Ratio 

Benign 430,437 30 9962 89% 

Port Scan attack 313,770 30 1167 11% 

 

A snapshot of the list of extracted flow variables are furnished below. 

{'ip_addresses,'syn_flag_count','dst_port_count','dst_srv_port_count','dst_ip_count', 

'proto_count','tcp_proto_count','udp_proto_count','icmp_proto_count', 

'tcp_proto_ratio','udp_proto_ratio','icmp_proto_ratio','reply_count','reply_ratio', 

'mean_packets', 'max_packets', 'mean_bytes', 'max_bytes','n_flows', 'duration'} 



3.2 CSE-IDS-2018-V2 dataset 

Further experimentation was carried out with the CSE-CIC-IDS2018 dataset [10]. The 

creators evaluated the shortcomings of the eleven publicly available datasets since 

1998 and came up with a dataset to address those. It conforms to each of the eleven 

criteria of the last intrusion detection dataset evaluation framework [12] which none 

of the other datasets could completely meet. More details on the dataset creation are 

available in [13]. The version used for evaluation takes the original .pcap files from 

this dataset to generate NetFlow-based data and is called NF-CSE-CIC-IDS2018. 

The NF-CSE-CIC-IDS2018 consists of, in addition to a benign or normal class, six 

different common update-to-date attacks which conform to real world criteria; we 

trained and validated our model on a subset of four commonly occurring attack sce-

narios out of the six – botnet, brute force attacks, DDoS (Distributed Denial of Ser-

vice) and infiltration attacks. We included a fifth web attacks category in the test set 

to evaluate model performance on previously unseen data. Each row of data contains 

aggregated statistics on each flow of packets in the network in the form of 41 features. 

The number of flows or occurrences for each type of attack used in our experiments is 

given in Table 2.  

Table 2. Dataset classes and corresponding number of occurrences 

 Class # of occurrences 

1 Normal 998,135 (62.63%) 

2 Botnet 143,097 (8.98%) 

3 Brute Force 120,912 (7.59%) 

4 DDoS 211,607 (13.28%) 

5 Infiltration 116,361 (7.30%) 

6 Web Attacks 3,502 (0.22%) 

4 Evaluation 

The NF-CSE-CIC-IDS2018 dataset was split into two sets with 70% of data used for 

cross-fold validation and 30% used as a separate evaluation set containing an addi-

tional class of web attacks that is not included in the first set in order to evaluate the 

model on new and evolving threats.  

 

For evaluation purposes, we use the three common information retrieval metrics: 

• Precision (Pr) – ratio of correctly classified attack flows (true positives - TP) and 

total classifications (sum of true positives and false positives - FP).  

• Recall (Re) – ratio of correctly classified attack flows (TP) and all flow instances 

(sum of true positives and false negatives - FN). 

• F-Measure (F1) – the harmonic combination of precision and recall values.  

 



The three measures are calculated as shown in equation 4. 

 𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1 =

2
1

𝑃𝑟+
1

𝑅𝑒

 (4) 

4.1 Comparison with other models 

SANTA was then trained and evaluated using the first set of data using 5-fold cross 

validation technique. This technique involves splitting of the dataset into 5 folds with 

a different combination of 4 sets to train and 1 to validate at each run. The results are 

then averaged across each combination to ensure a report with less bias. The tech-

nique is visualized in the Figure 4 below showing the data split into 5 folds and each 

of the 5 runs with different combination of train and test set.  

 

 
Fig 4-Cross validation technique with 5 folds. 

The results are compared to those from known supervised models and the results are 

shown in Table 3 below. 

Table 3. Results on NF-CIC-IDS2018 dataset 

Model Precision Recall F1-Score 

SANTA 0.98 0.84 0.86 

Gradient Boosting Classifier 0.98 0.84 0.86 

Random Forest Classifier 0.95 0.87 0.89 

Linear SVC 0.73 0.44 0.43 

Logistic Regression 0.68 0.43 0.43 

 

The initial results demonstrate that the SANTA model performs competitively with 

Random Forest and Gradient Boosted Trees on the dataset in terms of classifying 

known attacks.  
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4.2 New attack scenarios 

The separated test set with the additional unseen class of web attacks was then 

used to evaluate the SANTA model against the top contenders from the cross-

validation stage – Gradient Boosting Classifier and Random Forest Classifier. 

Table 2 also shows the attack classes present in the set and the results in Table 

4 show the precision and recall values on each class. 

Table 4. Comparison with other models on seen and unseen test data 

 Precision Recall 

Model 1 2 3 4 5 6 1 2 3 4 5 6 

SANTA 0.91 1.00 0.69 1.00 0.84 0.10 0.94 0.94 1.00 0.40 0.00 0.85 

Random Forest 

Classifier 
0.93 1.00 1.00 0.96 0.92 0.00 1.00 1.00 1.00 1.00 0.33 0.00 

Gradient Boosting 

Classifier 
0.92 1.00 1.00 0.95 0.98 0.01 1.00 1.00 0.98 1.00 0.22 0.00 

 

The results are calculated based on confidence thresholds on the output of each mod-

el. If a predicted class has a confidence (or probability) of less than 0.5, it is classified 

as an anomaly or a previously unseen attack pattern. The threshold of 0.5 as men-

tioned previously is currently set intuitively after manual inspection of results. All the 

predicted web attacks also form part of this category. In the cyber security scenario 

and with the detection logic that is in place for this experiment, the two values of note 

for each model are the precision on the 1st class (normal instances) and the recall on 

the 6th class (anomalies or unseen attacks). This is because of our two objectives. 

Firstly, we want to reduce the instances that are falsely classified as normal as this can 

lead to threats going through to a system undetected; these false positives are captured 

by the precision value on the first class. Secondly, we want to ensure that there are no 

unseen threats that are missed by the model; these 6th class false negatives are reflect-

ed in the corresponding recall value. The results indicate SANTA is competitive in 

reducing undetected threats and the ability to detect new threats with significant con-

sistency. 

This experiment evaluates the effectiveness of the data enrichment using autoen-

coder which sets the SANTA model apart. The web attacks data are a new type of 

attack which was never used for training or validation process. When the web attack 

data was used for testing the ability of the models to detect an unknown threat, SAN-

TA had a remarkable 0.85 recall whereas other models had a recall value of 0.00 (re-

fer to Table 4). This is because the enriched data used in SANTA model contains the 

encodings generated by the pruned encoder component of the unsupervised model.  

It must be noted that the supervised training process utilises the enriched data, 

which forces the model to use encodings to detect and identify threats. However, in 

the case of a new threat (unknown threat) faced by the SANTA model, the unsuper-

vised component containing the encoder produces ineffective encodings which subse-

quently set this data apart from previously seen (normal) data. These are passed on to 

the supervised classifier, concatenated with the raw data, to classify the threat. Since 



the encodings are significantly different, the deviant signature is detected by the su-

pervised classifier which classifies the input data as an anomaly.  

 

4.3 Synthetic Carrier dataset-based evaluation 

This section discusses the results produced using the synthetic carrier dataset, where a 

few selections of supervised and semi-supervised models were used for the bench-

marking experiment. The graph below shows the widely opted machine learning 

model evaluation metrics precision, recall and F1-score on a range of models. The 

XGBOD-41[8] is a semi-supervised extreme gradient boosted outlier detection model 

comparing of multiple outlier detection algorithms (KNN, HBOS etc.) stacked in 

various combination of hyper parameters to include 41 outlier models. Similarly, for 

XGBOD-25 and XGBOD-15, where the number of outlier models are reduced to 25 

and 15 respectively using manual selection process. The XGBOD-41 has the highest 

precision score reaching 88%, followed by SANTA model reaching 87%. The SAN-

TA models top the recall with 83% and F-1 Score of 85%. 

 

 

Fig 5-Synthetic Carrier NetFlow data -Classification results 

 

It must be noted that the XGBOD model is computationally expensive for training 

and inference. For example, the SANTA is 18 times faster compared to XGBOD dur-

ing the inference and this makes the SANTA an optimal solution for real-time high-

volume deployments with minimal computational requirements, even edge deploy-

ments. 

 

T e initial res lts also indicate t e SANTA’s resiliency to increase in q antities of 

training data. The graph below compares the performance of SANTA model and ran-

dom forest on 30% of training data and 100% of training data. The results indicates 

that the SANTA models trained on just 30% of total training data outperforms the 

    
    

    
    

        

    
    

    
    

    

        
    

    
        

    

    
    
    
    
   
    
    
    
    
   

                              
      

             

 
 
 
  
  
  
  
  
  
  
  
 

         

                       



random forest model trained on 100% of training data. This also indicates the low 

quantity ground truth training data requirement for SANTA model.  

5 Conclusion 

This paper introduced a new approach to network-based threat detection utilising 

semi-supervised learning with a combination of unsupervised representation learning 

and supervised learning.  

 

The use of adversarial regularisation in the unsupervised module to train the auto-

encoder allows the model to cater to the known generalization problem with increased 

number of false positives in unsupervised approaches. The results on the NF-CIC- 

 

 

Figure 6-30% labelled data Vs 100% labelled data model performance 

 

IDS2018 dataset corroborate the hypothesis with a high precision value on normal 

class indicating small number of false positives.  

The combination of the enriched feature space from unsupervised module with 

original data allows the model to perform extremely well on unseen data of new at-

tack patterns. The results on a test set including a new attack type show the ineffec-

tiveness of supervised techniques such as the Random Forest on new and evolving 

attacks, while the SANTA model showed a remarkable recall rate on new data. This 

makes the SANTA very relevant in the cybersecurity domain especially where new 

threats are constantly cropping up and existing threats are evolving daily. Most im-

portantly, the known threats tend to evolve over time (concept drift) to fool the securi-

ty systems  it  ne   atterns of attac , SANTA model’s initial analysis indicates it 

potential to detect such change in behaviours over time. 

Future work is needed research into improving the ability of the unsupervised 

mod le in enric in  t e dataset and f rt er develo ment of t e s  ervised al orit m’s 

detection logic to improve accuracy and robustness on new and existing attack pat-

    

    
    

    

    
    

    

    
    

    

    
    

   

    

   

    

   

                        

 
 
 
 
 
 
 
  
  

                     

                          
                            



terns. There is also scope for empirical investigation into the threshold value that is 

set for interpretation of classification results. 

Appendix 

Table 6. Encoder, Decoder and Critic Architecture. 

Encoder 

Layer Kernel, Stride Output Parameters 

Input ─ 1 × 41  

Convolution 4, 2 16 × 21 80 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 64 

Convolution 4, 2 32 × 11 2,080 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 128 

Convolution 4, 2 64 × 6 8,265 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 256 

Linear ─ 6 2,310 

Total   13,174 

 

Decoder 

Layer Kernel, Stride Output Parameters 

Input ─ 6  

Linear ─ 64 × 6 2,688 

Transpose Convolution 4, 2 32 × 11 8,224 

ReLU ─ ─ ─ 

Batch Normalization ─ ─ 128 

Transpose Convolution 4, 2 16 × 21 2,064 

ReLU ─ ─ ─ 

Batch Normalization ─ ─ 64 

Transpose Convolution 4, 2 1 × 41 65 

Sigmoid ─ ─ ─ 

Total   13,233 

 

 

 

 

 



Critic 

Layer Kernel, Stride Output Parameters 

Input ─ 1×41  

Convolution 4, 2 16×21 80 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 64 

Convolution 4, 2 32×11 2,080 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 128 

Convolution 4, 2 64×6 8,265 

Leaky ReLU ─ ─ ─ 

Batch Normalization ─ ─ 256 

Linear ─ 6 4,230 

Leaky ReLU ─ ─ ─ 

Layer Normalization ─ ─ 12 

Linear ─ 1 7 

Total   15,113 
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