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Abstract—In this paper, we show that analysis of acoustic
emanations recorded from haptic feedback during gesture-typing
sessions is a viable side-channel for carrying out eavesdropping
attacks against mobile devices. The proposed approach relies
on acoustic emanation resulting from haptic events, namely the
buzz of a small vibration motor as the finger initiates the gesture-
typing of a work in a sentence. By analysing time between haptic
feedback events, it is possible to identify the text that a user enters
via the soft keyboard on their device. The attack requires no prior
interaction or need to install software on the target device (unlike
similar works); only the ability to record audio within the vicinity.
We present an experimental framework to illustrate the feasibility
of the attack. In the experiments we show that sentences can be
detected with an accuracy of 70% with some sentences identified
with up to 95% accuracy. The attack can be conducted with
minimal computation and on non-specialist consumer equipment.
The paper concludes by proposing a number of countermeasures
that mitigate the ability of an attacker to successfully intercept
keyboard input.

Index Terms—mobile, gesture, eavesdropping, haptic, feed-
back, side-channel, attack, acoustic emanation, DTW

I. INTRODUCTION

Mobile devices have become one of the most popular
technologies in the world. In 2020 is it predicted that a total of
1.5 billion devices will be sold [1]. Such devices are used in
both personal and professional contexts with users installing
applications to access a variety of different services such as
social media, email and instant messaging. The plethora of
data communicated via these devices, however, is often of a
personal nature. The sentences typed by users is implied to be
confidential and for the eyes of the recipient only. However, in
recent years a number of attacks have come to the fore which
pose new challenges for security professionals.

Some attacks focus on software implants that can trans-
parently collect sensitive data for egress. Such attacks have
an advantage in that the attacker need not be present for
the attack. However, these attacks are becoming increasingly
more difficult due to the improved detection of malware, use
of cryptography and enterprise security policies. Attacks that
focus on the user’s physical interaction with mobile devices
have also been shown to be a successful vector for attack. Such
attacks often rely on emissions of sounds or visual cues (e.g.:
[2]). One of the vectors that can yield sound based data from
which attacks may be realised is through the soft keyboard
interface.

In this paper we demonstrate that it is possible for a third-
party to capture audio signals from haptic feedback mecha-
nisms emitted from gesture-typing and perform classification
to identify text that has been entered into a device. This does
not require direct access to the device in any form. Our attack
requires only the ability to capture audio produced by the
haptic feedback mechanism of a target device, which can be
done with a second device in proximity to the target. We
present this as a new and novel attack vector.

II. BACKGROUND

A side-channel attack is one based upon non-conventional
information leaks that occur due to the way in which a system
is implemented, which is constrained by practical hardware
limitations [3]. Attacks of this nature involve analysis of
unconventional data such as timing [4], thermal imaging [5],
acoustic emanations [2], [6], electromagnetic radiation [7],
optical emission [8] and reflections [9]. These attacks typ-
ically enable eavesdropping of data previously assumed to
be secured through higher level security mechanisms such as
cryptographic algorithms.

A. Gesture-Typing

Keyboards on modern mobile devices are implemented
through a touchscreen. These keyboards appear and disappear
as required and can be typed upon through tapping the letter on
the screen or through gesture-typing. Gesture-typing requires
the user place their finger on the first letter of the word and
then drag their finger to each subsequent letter in the word
until they reach the last letter at which point the finger is
removed and the gesture processed into a word. Thus far, only
keystroke-based attacks have been implemented against mobile
devices and no attack has been attempted through the sounds
emitted by a gesture-typing keyboard.

B. Haptic feedback

Haptic refers to mechanisms that convey a sense of touch
to users. Haptic technology is a common design element
that provides useful feedback to users that input has been
successfully entered. Haptic feedback for gesture-typing is
common, and usually occurs as a small vibration when the
user first places their finger on the screen to begin a word.
Haptic feedback is usually implemented as motor vibration.



TABLE I
SENTENCES CHOSEN FOR A SMALL-SCALE TRIAL, SIMILAR WORD AND

SENTENCE LENGTHS WERE USED, BUT CHARACTERS LIKE COMMAS AND
APOSTROPHES WERE AVOIDED.

ID Sentence Words
1 The quick brown fox jumped over the lazy dog 9
2 The pin for my card is 1234 10
3 The temperature in the house is too hot 8
4 In London April is a spring month 7
5 Could I have chocolate on my cappuccino 7
6 Computer security conferences are the best 6
7 The lazy fox jumped over the quick brown dog 9
8 In summer I like to go strawberry picking 8
9 My car leaks so the rain gets in and makes it wet 12
10 The Caribbean has a great climate for a holiday 9

C. Related Work

Conventional keyboards have also been the subject of
acoustic emanation attacks as shown in [2], [10]. Similarly,
the use of multiple microphones concealed in a PIN-entry
device is sufficient to recover input [6]. Similar techniques
have been demonstrated against soft keyboards, although not
gesture-based [11]. Eavesdropping attacks on gesture-typing
has been demonstrated in prior work by Simon et al. [12]
who utilised user-space permissions in Android to monitor
interrupt counters for the soft keyboard. This attack requires
the installation of a malicious application onto the target de-
vice, but demonstrates the ability to recognise text entered via
gesture-typing by analysing the time between haptic events.
Research works have shown that there are differences in the
way different words are typed due to the points of pause and
redirection in gesture-typed words, as seen in [13] and [12].

III. PROPOSED SCHEME

In this section we describe the data collection, pre-
processing and classification approach.

A. Data Collection & Pre-processing

There is no publicly available dataset that contains the data
that we require for our experiment. Therefore, we collect our
own dataset in this paper. The devices used are a Moto G5S
Plus (XT1803) and a Samsung Galaxy S10e (both owned
by the study authors). The devices are placed on the same
table in close proximity. One device is set up with a notepad
application to allow typing and the other runs a recording
application (downloaded via Google Play). One user writes
sentences on one device flat on the table whilst the other
initiates and ceases the recording of each sentence from the
other device flat on the table. The sentences used are shown
in Table I. For efficiency, due to WAV files having a high
sampling rate, we down-sample the signal to use every 100th

value in the signal.

B. Classification

Dynamic Time Warping (DTW) is an algorithm that can
be used to classify time series data where sequences may be
of different lengths or contain unique events but at different
times in the series. We use this because it is popular for

finding similar samples of audio [14]. The technique works
by warping the dimension of time such that each event in
one sequence is mapped to an event in the other sequence that
yields the shortest distance between the two sequences. This is
achieved through the construction of a 2D matrix used to store
the accumulated distance of the event-to-event comparisons.
Each individual distance between two sequence events i and
k is computed as di,k = |i − k|. This result in N × M
distance values for two sequences s1 and s2 of lengths N and
M . The accumulated cost for each event-to-event mapping is
represented in the matrix by the minimum of (i−1, k)+di,k,
(i, k−1)+di,k and (i−1, k−1)+di,k. The time complexity
for a DTW comparison is O(NM).

IV. EXPERIMENTATION & RESULTS

In this section we perform experimentation following our
proposed attack approach. The first experiment is designed to
assess both the feasibility of this attack in a limited scenario
and also to establish an optimal number of sentence samples
to include in a dataset for accurate sentence classification.
This experiment is performed using all 10 sentences. Given
each user has 10 samples for each sentence, there are a
maximum of 20 samples for each sentence. For each number of
sentence samples, Nsamp, involved in the experiment, Nsamp-
fold cross-validation is performed where one sample is held
out for testing and the remaining samples from all sentences
used for training. The test sample is then compared to all
training samples using DTW. If the test sample is matched to
a training sample of the same sentence then it is recorded as
a match (and a non-match if otherwise). The final accuracy
is computed as the portion of correctly matched sentences.
The number of samples for each sentence (Nsamp) is varied
(from 2 to 20 in increments of 2) to assess the effect of a larger
training set and to find an optimal number of training samples.
For all comparisons for all sentence samples in the dataset, the
computation time is recorded to identify any patterns.

The results for this experiment are shown in Figures 1 and
2. In Figure 1, it can be seen that overall a greater number of
sentence samples used in the training set results in the most
accurate sentence identification. When all 20 sentences are
used in the experiment for the comparison, an accuracy of
70% is achieved. In Figure 2, the time taken to process each
experiment for each variation of Nsamp is shown when run
on a single thread of a ThinkPad P52 laptop with an Intel
Core i7-8750H CPU and 24GB of RAM. As noted by the
figure, using all sentences also takes the most amount of time
to process but the increase is time is linear.

The next experiment explores the results at a greater level
of granularity. The experiment uses the approach that gave
the most accurate results in the previous experiment; where
all other sentence samples are used for comparison. Here, the
number of matches and non-matches for each sentence are
recorded and the accuracy is computed as before. The results
for this experiment are shown in Figure 3. We can see that
different sentences have varying degrees of accuracy. The most
accurate sentence was sentence ID 6 (see Table I) at 95%. This



Fig. 1. The accuracy of our proposed scheme as the number of sentences
included in the approach is varied. The greater the sentences in the experiment
the higher the accuracy due to greater likelihood of a sentence match.

Fig. 2. The time taken to run each experiment with different numbers of
sentences included. Note that although DTW is O(NM), the increase in
experiment complexity per sentence addition is linear due to the increase in
sentences simply adding more comparisons, resulting in O(n) for this aspect.

may be due to it having a unique number of very distinct words
of varying length compared to other sentences.

V. DISCUSSION

Our results demonstrate that it is possible to perform an
eavesdropping attack against commonplace soft keyboards
based entirely on inadvertent acoustic emanations from haptic
mechanisms. This has significant consequences that must be
considered by those practicing operational security.

The position of the device has an impact on the ability to
detect audio emanations, we posit that if the device is laid on a
flat, solid surface such as a desk, then sound resonates through
the surface allowing for easier detection by an attacker device
mounted on the same surface. Similarly, the typing style of
the user and features like fingernail length can improve the
ability to capture signals.

The most obvious cause for concern is that user input
could be identified, regardless of the security (such as end-
to-end encryption) of the application in use. Furthermore, the
literature demonstrates the ability to identify individual authors
in similar attacks [12].

Fig. 3. The sentence accuracy for each sentence in this experiment (results
generated in a setup using all sentences).

A. Scaling the Attack

Whilst our experimentation has had a number of constraints,
it is possible that this is an attack that can be scaled and
applied in the real-world, with significant concerns for user
safety and privacy. Further research into identification of
sentence fragments and high-fidelity capture of the audio
emanations could enable large-scale surveillance utilising this
side-channel. Classification of audio is a well understood task,
driven by commercial developments [15], [16] that make the
likelihood of detecting and retrieving haptic feedback in a
noiser environment higher. There are a number of practical
technologies easily deployed today and the state-of-the-art
continues to evolve.

There is a historical record of technical ingenuity and
willingness to conduct espionage. This is demonstrated by “the
Great Seal Bug”, a covert listening device [17] and techniques
known to have been developed as part of “TEMPEST” opera-
tions based on EM side-channel attacks [18]. The ease of such
attacks was revealed more publicly by van Eck [7]. Thus, the
risk of such attacks being carried out by nation state actors
or anyone else with the inclination, are a credible concern.
Proliferation of smart speaker technology incorporating mi-
crophones provides a large potential attack surface and even
equipment not traditionally intended to capture audio, such as
hard drives can be reconfigured [19].

B. Counter-Measures

Haptic feedback is a useful feature of soft keyboards and
it is difficult to overcome the vulnerability we have presented
without getting rid of it entirely.

The most likely countermeasures involve modification of the
existing haptic feedback used, which falls between being se-
cure and being useful. The most secure, is no haptic feedback
at all, which provides no useful information to the user. A less
secure, but more useful approach, would be to have haptics
occur at the start of word events as well as zero-motion events
(such as pausing over a letter, or changing direction).



Other approaches may involve the use of additional hard-
ware that can mitigate the ability of an attacking device to
identify acoustic emanations, this may be in the form of active
noise-cancelling or chaff.

More advanced electronics may reduce inadvertent audio
noise though we could expect more sophisticated audio detec-
tion equipment in turn. New forms of haptic feedback with a
lower audio profile might be considered, such as solid-state
electrosensory feedback.

C. Future Work
The future work of this study will focus on improving the

practicality of the scheme. Firstly, our work will investigate
the effects on accuracy as the distance recording device is
varied. We hypothesise that the further away the recording
device, the lower the accuracy will be. Furthermore, we will
investigate the effect of the type of different recording devices.
It is possible that a high quality recording device capable of
capturing fine-grained sound and subsequent pre-processing
could make the attack more viable.

Research towards the identification of specific words, n-
grams and sentence fragments would be necessary to utilise the
attack outside of a controlled environment, where it may not
be possible to ascertain the start and end of sentences. In the
first stage this would involve the identification of key phrases
within a larger input sample. The ability to detect sentence
fragments and individual authors has already been demon-
strated through analysis of software interrupt timing [12] and
could be translated to the haptic side-channel.

Approaches such as Markov chains and recurrent neural
networks that may provide a greater ability to predict sentence
fragments than the nearest-neighbour approach carried out
with DTW. This would require extraction of higher-order
statistics from the original source audio.

Additional data from a wider variety of users and larger
corpus of text is also required. The use of synthetic datasets
generated by calculating zero-motion events for words may
greatly enhance the ability to train classifiers. Of particular
interest is the ability to uniquely identify individual users not
present in the training data.

There is a variety of piezo, laser and bone conduction
technology that may yield superior ability to capture audio in
various environments. It is also known that attack performance
is impacted by the properties of materials used for audio
transmission [20].

VI. CONCLUSIONS

Eavesdropping attacks in the modern world traditionally
focus on taking advantage of flaws in software on a target
device. This paper has made a novel scientific contribution by
documenting the presence of an eavesdropping risk through
the analysis of acoustic emanations from haptic feedback in
soft keyboards. This forgoes the need to target devices with
malicious software. Our initial experimentation demonstrates
there is a credible threat and we have identified key areas for
further research, both to assess the scalability of the attack and
to explore potential counter-measures.
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